Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.09.15.20194258

ABSTRACT

Background: Unprecedented public health interventions including travel restrictions and national lockdowns have been implemented to stem the COVID-19 epidemic, but the effectiveness of non-pharmaceutical interventions is still debated. International comparisons are hampered by highly variable conditions under which epidemics spread and differences in the timing and scale of interventions. Cumulative COVID-19 morbidity and mortality are functions of both the rate of epidemic growth and the duration of uninhibited growth before interventions were implemented. Incomplete and sporadic testing during the early COVID-19 epidemic makes it difficult to identify how long SARS-CoV-2 was circulating in different places. SARS-CoV-2 genetic sequences can be analyzed to provide an estimate of both the time of epidemic origin and the rate of early epidemic growth in different settings. Methods: We carried out a phylogenetic analysis of more than 29,000 publicly available whole genome SARS-CoV-2 sequences from 57 locations to estimate the time that the epidemic originated in different places. These estimates were cross-referenced with dates of the most stringent interventions in each location as well as the number of cumulative COVID-19 deaths following maximum intervention. Phylodynamic methods were used to estimate the rate of early epidemic growth and proxy estimates of epidemic size. Findings: The time elapsed between epidemic origin and maximum intervention is strongly associated with different measures of epidemic severity and explains 46% of variance in numbers infected at time of maximum intervention. The reproduction number is independently associated with epidemic severity. In multivariable regression models, epidemic severity was not associated with census population size. The time elapsed between detection of initial COVID-19 cases to interventions was not associated with epidemic severity, indicating that many locations experienced long periods of cryptic transmission. Interpretation: Locations where strong non-pharmaceutical interventions were implemented earlier experienced much less severe COVID-19 morbidity and mortality during the period of study.


Subject(s)
COVID-19 , Growth Disorders , Death
2.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.07.31.20166082

ABSTRACT

Global dispersal and increasing frequency of the SARS-CoV-2 Spike protein variant D614G are suggestive of a selective advantage but may also be due to a random founder effect. We investigate the hypothesis for positive selection of Spike D614G in the United Kingdom using more than 25,000 whole genome SARS-CoV-2 sequences. Despite the availability of a large data set, well represented by both Spike 614 variants, not all approaches showed a conclusive signal of positive selection. Population genetic analysis indicates that 614G increases in frequency relative to 614D in a manner consistent with a selective advantage. We do not find any indication that patients infected with the Spike 614G variant have higher COVID-19 mortality or clinical severity, but 614G is associated with higher viral load and younger age of patients. Significant differences in growth and size of 614G phylogenetic clusters indicate a need for continued study of this variant.


Subject(s)
COVID-19
3.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.07.13.20152355

ABSTRACT

As of 1st June 2020, the US Centers for Disease Control and Prevention reported 104,232 confirmed or probable COVID-19-related deaths in the US. This was more than twice the number of deaths reported in the next most severely impacted country. We jointly modelled the US epidemic at the state-level, using publicly available death data within a Bayesian hierarchical semi-mechanistic framework. For each state, we estimate the number of individuals that have been infected, the number of individuals that are currently infectious and the time-varying reproduction number (the average number of secondary infections caused by an infected person). We used changes in mobility to capture the impact that non-pharmaceutical interventions and other behaviour changes have on the rate of transmission of SARS-CoV-2. Nationally, we estimated 3.7% [3.4%-4.0%] of the population had been infected by 1st June 2020, with wide variation between states, and approximately 0.01% of the population was infectious. We also demonstrated that good model forecasts of deaths for the next 3 weeks with low error and good coverage of our credible intervals.


Subject(s)
COVID-19 , Coinfection , Oculocerebrorenal Syndrome , Death
SELECTION OF CITATIONS
SEARCH DETAIL